Anticryptosporidial action mechanisms of Launaea spinosa extracts in Cryptosporidium parvum experimentally infected mice in relation to its UHPLC-MS metabolite profile and biochemometric tools

Author(s): Mai M Elghonemy, Mohamed G Sharaf El-Din, Dina Aboelsoued, Mohamed F Abdelhameed, Mohamed A El-Saied, Nagwa I Toaleb, Mohamed A Farag, Abdelsamed I Elshamy, Abdelbaset M Elgamal

Keywords: Launaea spinosa, Cryptosporidium parvum, Humoral Immune Response, Cellular immune response, Biochemical, Histopathology, Immunohistochemical. 

Abstract

Background:

Cryptosporidium parvum, a leading cause of diarrhea, is responsible for millions of food and waterborne illnesses in humans and animals worldwide. Launaea spinosa (Asteraceae family) is a common herb found in the desert of the Mediterranean region, encompassing the peninsula of Sinai. Traditionally, it has been utilized for managing gastrointestinal issues and inflammation.

Methods and findings:

The present study aimed to assess Launaea spinosa (LS) extracts viz. ethyl acetate (LS-EtOAc), ethanol (LS-EtOH), and n-butanol (LS-BuOH), of different polarities against C. parvum in experimentally infected mice based on immunological, biochemical, histo- and immunohistochemical assays. Extracts were characterized via UHPLC-ESI-LIT-Orbitrap-MS and metabolite profiles were subjected to correlation modeling with bioactivities via supervised Partial Least Square (PLS) to identify active agents. Most L. spinosa extracts reduced fecal C. parvum oocyst count and mucosal burden (P < 0.05)
than untreated infected mice, with LS-BuOH (200 mg/kg) exerting the highest reduction percentage (97%). These extracts increased immunoglobulin G (IgG) levels in infected and treated mice at all examined days post treatment. Also, the highest Interferon-Gamma (IFN-γ) and Interleukin-15 (IL-15) levels were obtained after 10 days of post inoculation (dPI), which were restored to a healthy state after 21 days, concurrent with a decrease in Tumor Necrosis Factor-Alpha (TNF-α) (P < 0.001). The increased liver enzyme (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) levels with infection were likewise reduced with extract administration. The LS extracts caused a significant increase in antioxidant glutathione peroxidase (GSH-Px) and catalase (P < 0.001). Examination of colon tissue revealed that infected-treated mice with LS extracts exhibited a reduction in the expression of cleaved caspase-3, damage score, and degenerative changes. Metabolite profiling of different L. spinosa extracts led to the identification of 86 components, primarily phenolic acids, flavonoids, triterpenoid saponins, and fatty acids, with the first report of sulfated triterpenoid saponins in Launaea genus. PLS regression analysis revealed that bioeffects were significantly positioned close to LS-BuOH extract (R2: 0.9) mostly attributed to triterpenoid saponins and flavonoid glycosides.

Conclusions:

This study demonstrated potential anti-cryptosporidial effects of LS extracts, especially LS-BuOH, suggesting its potential for inclusion in future nutraceuticals aimed at C. parvum treatment.

Download Full pdf

Abstract

1. Widmer G, Carmena D, Kváč M, Chalmers RM, Kissinger JC, Xiao L, et al. Update on cryptosporidium spp.: highlights from the seventh international giardia and cryptosporidium conference. Parasite. 2020;2714. https://doi.org/10.1051/parasite/2020011 PMID: 32167464

2. Ebiyo A, Haile G. Prevalence and factors associated with cryptosporidium infection in calves in and around nekemte town, east wollega zone of ethiopia. Vet Med Int. 2022;20221468242. https://doi.org/10.1155/2022/1468242 PMID: 35222937

3. Gharpure R, Perez A, Miller AD, Wikswo ME, Silver R, Hlavsa MC. Cryptosporidiosis Outbreaks—United States, 2009-2017. MMWR Morb Mortal Wkly Rep. 2019;68(25):568–72. https://doi.org/10.15585/mmwr.mm6825a3 PMID: 31246941

4. Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol. 2018;48(1):1–12. https://doi.org/10.1016/j.ijpara.2017.09.004 PMID: 29122606

5. Helmy YA, Hafez HM. Cryptosporidiosis: from prevention to treatment, a narrative review. Microorganisms. 2022;10(12):2456. https://doi.org/10.3390/microorganisms10122456 PMID: 36557709

6. Hatam-Nahavandi K, Ahmadpour E, Carmena D, Spotin A, Bangoura B, Xiao L. Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasit Vectors. 2019;12(1):453. https://doi.org/10.1186/s13071-019-3704-4 PMID: 31521186

7. Tzipori S. Cryptosporidiosis in perspective. Adv Parasitol. 1988;27:63–129. https://doi.org/10.1016/s0065-308x(08)60353-x PMID: 3289331

8. Aboelsoued D, Abdel Megeed KN. Diagnosis and control of cryptosporidiosis in farm animals. J Parasit Dis. 2022;46(4):1133–46. https://doi.org/10.1007/s12639-022-01513-2 PMID: 36457776

9. Mammeri M, Chevillot A, Thomas M, Polack B, Julien C, Marden J-P, et al. Efficacy of chitosan, a natural polysaccharide, against Cryptosporidium parvum in vitro and in vivo in neonatal mice. Exp Parasitol. 2018;1941–8. https://doi.org/10.1016/j.exppara.2018.09.003 PMID: 30237052

10. Santin M. Cryptosporidium and giardia in ruminants. Vet Clin North Am Food Anim Pract. 2020;36(1):223–38. https://doi.org/10.1016/j.cvfa.2019.11.005 PMID: 32029186

11. Brainard J, Hammer CC, Hunter PR, Katzer F, Hurle G, Tyler K. Efficacy of halofuginone products to prevent or treat cryptosporidiosis in bovine calves: a systematic review and meta-analyses. Parasitology. 2021;148(4):408–19. https://doi.org/10.1017/S0031182020002267 PMID: 33261668

12. Elshamy AI, Abd‐ElGawad AM, El‐Amier YA, El Gendy AEG, Al‐Rowaily SL. Interspecific variation, antioxidant and allelopathic activity of the essential oil from three Launaea species growing naturally in heterogeneous habitats in Egypt. Flavour & Fragrance J. 2019;34(5):316–28. https://doi. org/10.1002/ffj.3512

13. El-Fadaly AA, Younis IY, Abdelhameed MF, Ahmed YH, Ragab TIM, El Gendy AE-NG, et al. Protective action mechanisms of launaea mucronata extract and its nano-formulation against nephrotoxicity in rats as revealed via biochemical, histopathological, and UPLC-QTOF-MS/MS Analyses. Metabolites. 2023;13(7):786. https://doi.org/10.3390/metabo13070786 PMID: 37512493

14. Makasana A, Ranpariya V, Desai D, Mendpara J, Parekh V. Evaluation for the anti-urolithiatic activity of Launaea procumbens against ethylene glycol induced renal calculi in rats. Toxicol Rep. 2014;146–52. https://doi.org/10.1016/j.toxrep.2014.03.006 PMID: 28962225

15. Khan RA, Khan MR, Sahreen S, Ahmed M. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Cent J. 2012;6(1):43. https://doi.org/10.1186/1752-153X-6-43 PMID: 22616896

16. Qureshi S, Awan A, Khan M, Bano S. Taxonomic study of the genus Launaea L. from Pakistan. Online J Biol Sci. 2002;2315–9.

17. Cheriti A, Belboukhari M, Belboukhari N, Djeradi H. Phytochemical and biological studies on Launaea Cass. genus (Asteraceae) from Algerian Sahara. Phytochemistry. 2012;11: 67–80.

18. Abdallah H, Farag M, Osman S, Kim D hye, Kang K, Pan C-H, et al. Isolation of major phenolics from Launaea spinosa and their protective effect on HepG2 cells damaged with t-BHP. Pharm Biol. 2016;54(3):536–41. https://doi.org/10.3109/13880209.2015.1052885 PMID: 26052623

19. Asif M, , Saadullah M, Yaseen HS, Saleem M, Yousaf HM, et al. Evaluation of in vivo anti- inflammatory and anti-angiogenic attributes of methanolic extract of Launaea spinosa. Inflammopharmacology. 2020;28(4):993–1008. https://doi.org/10.1007/s10787-020-00687-6 PMID: 32172496

20. Henriksen SA, Pohlenz JF. Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Vet Scand. 1981;22(3–4):594–6. https://doi.org/10.1186/BF03548684 PMID: 6178277

21. Heine J. A simple technic for the demonstration of cryptosporidia in feces. Zentralbl Veterinarmed B. 1982;29(4):324–7. https://doi.org/10.1111/j.1439-0450.1982.tb01233.x PMID: 6181632

22. Current WL, Reese NC. A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice. J Protozool. 1986;33(1):98–108. https://doi.org/10.1111/j.1550-7408.1986. tb05567.x PMID: 3959014

23. Feltus DC, Giddings CW, Schneck BL, Monson T, Warshauer D, McEvoy JM. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. J Clin Microbiol. 2006;44(12):4303–8. https://doi.org/10.1128/JCM.01067-06 PMID: 17005736

24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80. https://doi.org/10.1093/nar/22.22.4673 PMID: 7984417

25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. https://doi.org/10.1093/molbev/mst197 PMID: 24132122

26. Aboelsoued D, Abo-Aziza FAM, Mahmoud MH, Abdel Megeed KN, Abu El Ezz NMT, Abu-Salem FM. Anticryptosporidial effect of pomegranate peels water extract in experimentally infected mice with special reference to some biochemical parameters and antioxidant activity. J Parasit Dis. 2019;43(2):215–28. https://doi.org/10.1007/s12639-018-01078-z PMID: 31263326

27. Kaushik K, Khurana S, Wanchu A, Malla N. Serum immunoglobulin G, M and A response to Cryptosporidium parvum in Cryptosporidium-HIV co-infected patients. BMC Infect Dis. 2009;9179. https://doi.org/10.1186/1471-2334-9-179 PMID: 19922628

28. LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75. https://doi.org/10.1016/s0021-9258(19)52451-6 PMID: 14907713

29. Fagbemi BO, Obarisiagbon IO, Mbuh JV. Detection of circulating antigen in sera of Fasciola gigantica-infected cattle with antibodies reactive with a Fasciola-specific 88-kDa antigen. Vet Parasitol. 1995;58(3):235–46. https://doi.org/10.1016/0304-4017(94)00718-r PMID: 7571328

30. Aboelsoued D, Hendawy S, Abdullah H, Abdel Megeed K, Hassan S, El Hakim A, et al. Diagno-sis of cryptosporidiosis using affinity purified antigen. Egyptian Journal of Veterinary Sciences. 2022;53(3):459–73. https://doi.org/10.21608/ejvs.2022.145814.1354

31. Ortolani EL. Standardization of the modified Ziehl-Neelsen technique to stain oocysts of Cryptosporidium sp. Rev Bras Parasitol Veterinária. n.d.;929–31.

32. Farid A, Tawfik A, Elsioufy B, Safwat G. In vitro and in vivo anti-Cryptosporidium and anti-inflammatory effects of Aloe vera gel in dexamethasone immunosuppressed mice. Int J Parasitol Drugs Drug Resist. 2021;17: 156–67. https://doi.org/10.1016/j.ijpddr.2021.09.002

33. Priest JW, Kwon JP, Moss DM, Roberts JM, Arrowood MJ, Dworkin MS, et al. Detection by enzyme immunoassay of serum immunoglobulin G antibodies that recognize specific Cryptosporidium parvum antigens. J Clin Microbiol. 1999;37(5):1385–92. https://doi.org/10.1128/JCM.37.5.1385-1392.1999 PMID: 10203492

34. Oriá RB, Costa DVS, de Medeiros PHQS, Roque CR, Dias RP, Warren CA, et al. Myeloperoxidase as a biomarker for intestinal-brain axis dysfunction induced by malnutrition and Cryptosporidium infection in weanling mice. Braz J Infect Dis. 2023;27(3):102776. https://doi.org/10.1016/j.bjid.2023.102776 PMID: 37150212

35. Aboelsoued D, Toaleb NI, Ibrahim S, Shaapan RM, Megeed KNA. A Cryptosporidium parvum vaccine candidate effect on immunohistochemical profiling of CD4+, CD8+, Caspase-3 and NF-κB in mice. BMC Vet Res. 2023;19(1):216. https://doi.org/10.1186/s12917-023-03699-w PMID: 37858196

36. Farrag ARH, Abdallah HMI, Khattab AR, Elshamy AI, Gendy AE-NGE, Mohamed TA, et al. Antiulcer activity of Cyperus alternifolius in relation to its UPLC-MS metabolite fingerprint: A mechanistic study. Phytomedicine. 2019;62:152970. https://doi.org/10.1016/j.phymed.2019.152970 PMID: 31181403

37. Abdel Shakour ZT, El-Akad RH, Elshamy AI, El Gendy AE-NG, Wessjohann LA, Farag MA. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem. 2023;399:133948. https://doi.org/10.1016/j.foodchem.2022.133948 PMID: 35994855

38. Farag MA, Sharaf El-Din MG, Aboul-Fotouh Selim M, Owis AI, Abouzid SF. Mass spectrometry-based metabolites profiling of nutrients and anti-nutrients in major legume sprouts. Food Bioscience. 2021;39:100800. https://doi.org/10.1016/j.fbio.2020.100800

39. Farag MA, El-Ahmady SH, Elian FS, Wessjohann LA. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics. Phytochemistry. 2013;95:177–87. https://doi.org/10.1016/j.phytochem.2013.07.003 PMID: 23902683

40. Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1):D62231. https://doi.org/10.1093/nar/gkab1062 PMID: 34986597

41. Davis BD, Brodbelt JS. Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15(9):1287–99. https://doi.org/10.1016/j.jasms.2004.06.003 PMID: 15337509

42. Pradas Del Real AE, Silvan JM, de Pascual-Teresa S, Guerrero A, García-Gonzalo P, Lobo MC, et al. Role of the polycarboxylic compounds in the response of Silene vulgaris to chromium. Environ Sci Pollut Res Int. 2017;24(6):5746–56. https://doi.org/10.1007/s11356-016-8218-4 PMID: 28050761

43. Mroczek A, Kapusta I, Stochmal A, Janiszowska W. MS/MS and UPLC-MS profiling of triterpenoid saponins from leaves and roots of four red beet (Beta vulgaris L.) cultivars. Phytochem Lett. 2019;30333–7. https://doi.org/10.1016/j.phytol.2019.02.015

44. Kleinenkuhnen N, Büchel F, Gerlich SC, Kopriva S, Metzger S. A novel method for identification and quantification of sulfated flavonoids in plants by neutral loss scan mass spectrometry. Front Plant Sci. 2019;10885. https://doi.org/10.3389/fpls.2019.00885 PMID: 31333712

45. Farag MA, Rasheed DM, Kropf M, Heiss AG. Metabolite profiling in Trigonella seeds via UPLC-MS and GC-MS analyzed using multivariate data analyses. Anal Bioanal Chem. 2016;408(28):8065–78. https://doi.org/10.1007/s00216-016-9910-4 PMID: 27614978

46. Simões CM, Amoros M, Girre L. Mechanism of antiviral activity of triterpenoid saponins. Phytother Res. 1999;13(4):323–8. https://doi.org/10.1002/(SICI)1099-1573(199906)13:43.0.CO;2-C PMID: 10404540

47. Huang B, Fu H-Z, Chen W-K, Luo Y-H, Ma S-C. Hepatoprotective triterpenoid saponins from Callicarpa nudiflora. Chem Pharm Bull (Tokyo).2014;62(7):695–9. https://doi.org/10.1248/cpb.c14-00159 PMID: 24804828

48. Liu Y-Y, Yang Y-N, Feng Z-M, Jiang J-S, Zhang P-C. Eight new triterpenoid saponins with antioxi-dant activity from the roots of Glycyrrhiza uralensis Fisch. Fitoterapia. 2019;133186–92. https://doi.org/10.1016/j.fitote.2019.01.014 PMID: 30690123

49. Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. Saponins in cancer treatment: current progress and future prospects. Pathophysiology. 2021;28(2):250–72. https://doi.org/10.3390/pathophysiology28020017 PMID: 35366261

50. Khan SM, Witola WH. Past, current, and potential treatments for cryptosporidiosis in humans and farm animals: a comprehensive review. Front Cell Infect Microbiol. 2023;131115522. https://doi.org/10.3389/fcimb.2023.1115522 PMID: 36761902

51. Ryan U, Zahedi A, Feng Y, Xiao L. An update on zoonotic cryptosporidium species and genotypes in humans. Animals (Basel). 2021;11(11):3307. https://doi.org/10.3390/ani11113307 PMID: 34828043

52. Santín M, Trout JM. Livestock. Cryptosporidium and cryptosporidiosis. CRC Press; 2007. pp. 451–484.

53. Singh BB, Sharma R, Kumar H, Banga HS, Aulakh RS, Gill JPS, et al. Prevalence of Cryptosporidium parvum infection in Punjab (India) and its association with diarrhea in neonatal dairy calves. Vet Parasitol. 2006;140(1–2):162–5. https://doi.org/10.1016/j.vetpar.2006.03.029 PMID: 16647820

54. Huang Y, Song Y, You Y, Mi R, Han X, Gong H, et al. Development of an immunocompetent mouse model susceptible to Cryptosporidium tyzzeri infection. Parasite Immunol. 2021;43(1):e12800. https://doi.org/10.1111/pim.12800 PMID: 33068486

55. Al-Mathal EM, Alsalem AM. Pomegranate (Punica granatum) peel is effective in a murine model of experimental Cryptosporidium parvum. Exp Parasitol. 2012;131(3):350–7. https://doi.org/10.1016/j.exppara.2012.04.021 PMID: 22580265

56. Aboelsoued D, Abdullah HHAM, Megeed KNA, Hassan SE, Toaleb NI. Evaluation of a vaccine candidate isolated from Cryptosporidium parvum oocyst in mice. Vet World. 2022;15(12):2772–84. https:// doi.org/10.14202/vetworld.2022.2772-2784 PMID: 36718331

57. Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, et al. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed. 2013;3(5):337–52. https://doi.org/10.1016/S2221-1691(13)60075-1 PMID: 23646296

58. Toulah FH, El-Shafei AA, Al-Rashidi HS. Evaluation of garlic plant and indinavir drug efficacy in the treatment of cryptosporidiosis in experimentally immumosuppressed rats. J Egypt Soc Parasitol. 2012;42(2):321–8. https://doi.org/10.12816/0006320 PMID: 23214211

59. Megeed KNA, Hammam AM, Morsy GH, Khalil FAM, Seliem MME, Aboelsoued D. Control of cryptosporidiosis in buffalo calves using garlic (Allium sativum) and nitazoxanide with special reference to some biochemical parameters. Global Veterinaria. 2015;14:646–55.

60. Asadpour M, Namazi F, Razavi SM, Nazifi S. Curcumin: A promising treatment for Cryptosporidium parvum infection in immunosuppressed BALB/c mice. Exp Parasitol. 2018;195:59–65. https://doi. org/10.1016/j.exppara.2018.10.008 PMID: 30385266

61. Abouelsoued D, Shaapan R, Elkhateeb RM, Elnattat W, Abd elhameed mohamed, Hammam AMM, et al. Therapeutic Efficacy of Ginger (Zingiber officinale), Ginseng (Panax ginseng) and Sage (Salvia officinalis) Against Cryptosporidium parvum in Experimentally Infected Mice. NIDOC-ASRT. 2020;51(2):241–51. https://doi.org/10.21608/ejvs.2020.24183.1152

62. Abdelrahman KA, Abdel Megeed KN, Hammam AM, Morsy GH, Seliem MME, Aboelsoued D. Molecular characterization of bubaline isolate of Cryptosporidium species from Egypt. Res J Parasit. 2015;10:127–41.

63. El Shazly AMA, Soltan DM, El-Sheikha HM, Sadek GS, Morsy ATA. Correlation of ELISA copro- antigen and oocysts count to the severity of cryptosporidiosis parvum in children. J Egypt Soc Parasi-tol. 2007;37(1):107–20. PMID: 17580571

64. Yu J-R, Lee S-U. Time gap between oocyst shedding and antibody responses in mice infected with Cryptosporidium parvum. Korean J Parasitol. 2007;45(3):225–8. https://doi.org/10.3347/ kjp.2007.45.3.225 PMID: 17876169

65. Jakobi V, Petry F. Humoral immune response in IL-12 and IFN-gamma deficient mice after infection with Cryptosporidium parvum. Parasite Immunol. 2008;30(3):151–61. https://doi.org/10.1111/j.1365-3024.2007.01013.x PMID: 18179628

66. Rossi A, Marqués JM, Gavidia CM, Gonzalez AE, Carmona C, García HH, et al. Echinococcus granulosus: different cytokine profiles are induced by single versus multiple experimental infections in dogs. Exp Parasitol. 2012;130(2):110–5. https://doi.org/10.1016/j.exppara.2011.12.006 PMID: 22202182

67. Allam NAT, Hamouda RAE-F, Sedky D, Abdelsalam ME, El-Gawad MEHA, Hassan NMF, et al. Medical prospects of cryptosporidiosis in vivo control using biofabricated nanoparticles loaded with Cinnamomum camphora extracts by Ulva fasciata. Vet World. 2024;17(1):108–24. https://doi. org/10.14202/vetworld.2024.108-124 PMID: 38406364

68. El-Wakil ES, Salem AE, Al-Ghandour AMF. Evaluation of possible prophylactic and therapeutic effect of mefloquine on experimental cryptosporidiosis in immunocompromised mice. J Parasit Dis. 2021;45(2):380–93. https://doi.org/10.1007/s12639-020-01315-4 PMID: 34295037

69. Gullicksrud JA, Sateriale A, Engiles JB, Gibson AR, Shaw S, Hutchins ZA, et al. Enterocyte-innate lymphoid cell crosstalk drives early IFN-γ-mediated control of cryptosporidium. Mucosal Immunol. 2022;15(2):362–72. https://doi.org/10.1038/s41385-021-00468-6 PMID: 34750455

70. Chang L, Chen Y, Kang Q, Qin J, Liu Z. Detection of expression alteration of cytokines in the intestine of Balb/c mice infected with Cryptosporidium parvum using relative fluorescence quantitative PCR method. Pakistan Journal of Zoology. n.d.;54.

71. Zganiacz A, Santosuosso M, Wang J, Yang T, Chen L, Anzulovic M, et al. TNF-alpha is a critical negative regulator of type 1 immune activation during intracellular bacterial infection. J Clin Invest. 2004;113(3):401–13. https://doi.org/10.1172/JCI18991 PMID: 14755337

72. Lean I-S, Lacroix-Lamandé S, Laurent F, McDonald V. Role of tumor necrosis factor alpha in development of immunity against Cryptosporidium parvum infection. Infect Immun. 2006;74(7):4379–82. https://doi.org/10.1128/IAI.00195-06 PMID: 16790816

73. Ahmed SR, Mostafa EM, Musa A, Rateb EE, Al-Sanea MM, Abu-Baih DH, et al. Wound healing and antioxidant properties of launaea procumbens supported by metabolomic profiling and molecular docking. Antioxidants (Basel). 2022;11(11):2258. https://doi.org/10.3390/antiox11112258 PMID: 36421445

74. Kandil HM, Berschneider HM, Argenzio RA. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins. Gut. 1994;35(7):934–40. https://doi.org/10.1136/gut.35.7.934 PMID: 8063221

75. White AC, Robinson P, Okhuysen PC, Lewis DE, Shahab I, Lahoti S, et al. Interferon-gamma expression in jejunal biopsies in experimental human cryptosporidiosis correlates with prior sensitization and control of oocyst excretion. J Infect Dis. 2000;181(2):701–9. https://doi.org/10.1086/315261 PMID: 10669358

76. Dann SM, Wang H-C, Gambarin KJ, Actor JK, Robinson P, Lewis DE, et al. Interleukin-15 activates human natural killer cells to clear the intestinal protozoan cryptosporidium. J Infect Dis. 2005;192(7):1294–302. https://doi.org/10.1086/444393 PMID: 16136475

77. Kothavade RJ. Challenges in understanding the immunopathogenesis of Cryptosporidium infections in humans. Eur J Clin Microbiol Infect Dis. 2011;30(12):1461–72. https://doi.org/10.1007/s10096-011-1246-6 PMID: 21484252

78. Elmahallawy EK, Elshopakey GE, Saleh AA, Agil A, El-Morsey A, El-Shewehy DMM, et al. S-Methylcysteine (SMC) ameliorates intestinal, hepatic, and splenic damage induced by cryptosporidium parvum infection via targeting inflammatory modulators and oxidative stress in swiss albino mice. Biomedicines. 2020;8(10):423. https://doi.org/10.3390/biomedicines8100423 PMID: 33076496

79. Wasmuth HE, Kunz D, Yagmur E, Timmer-Stranghöner A, Vidacek D, Siewert E, et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol. 2005;42(2):195–201. https://doi.org/10.1016/j.jhep.2004.10.019 PMID: 15664244

80. Mousa N, Abdel-Razik A, El-Nahas H, El-Shazly A, Abdelaziz M, Nabih M. Cryptosporidiosis in patients with diarrhea and chronic liver diseases. J Infect Dev Count. 2014;8:1584–90.

81. Chalmers RM, Davies AP. Minireview: clinical cryptosporidiosis. Exp Parasitol. 2010;124(1):138–46. https://doi.org/10.1016/j.exppara.2009.02.003 PMID: 19545516

82. AbouGabal A, Aboul-Ela HM, Ali E, Khaled AEM, Shalaby OK. Hepatoprotective, DNA damage prevention and antioxidant potential of Spirulina platensis on CCl4-induced hepatotoxicity in mice. Am J Biomed Res. 2015;3:29–34.

83. Fernandes M da S, Iano FG, Rocia V, Yanai MM, Leite A de L, Furlani TA, et al. Alkaline phosphatase activity in plasma and liver of rats submitted to chronic exposure to fluoride. Braz arch biol technol. 2011;54(6):1187–92. https://doi.org/10.1590/s1516-89132011000600014

84. Khidr Z, Ebad F, El-Khawaga H. Osmoregulation and antimicrobial activity of two egyptian true xerophytes; launaea spinosa (forssk.) And leptadenia pyrotechnica (forssk.). Egypt J Desert Res. 2017;67(2):331–49. https://doi.org/10.21608/ejdr.2017.21132

85. Saleh MA, Mahran OM, Bassam Al-Salahy M. Circulating oxidative stress status in dromedary camels infested with sarcoptic mange. Vet Res Commun. 2011;35(1):35–45. https://doi.org/10.1007/s11259-010-9450-x PMID: 21082344

86. Abo-Aziza F, Hendawy S, Abd El-Kader Z, Oda S, El-Namaky A. Clinicohistopathological and immunological alterations in egyptian donkeys infested by rhinoestrus spp. during the winter season. NIDOC-ASRT. 2017;48(2):61–71. https://doi.org/10.21608/ejvs.2017.1555.1019

87. Shahbazi P, Nematollahi A, Arshadi S, Farhang HH, Shahbazfar AA. The protective effect of artemisia spicigera ethanolic extract against cryptosporidium parvum infection in immunosuppressed mice. Iran J Parasitol. 2021;16(2):279–88. https://doi.org/10.18502/ijpa.v16i2.6318 PMID: 34557243

88. Soufy H, El-Beih NM, Nasr SM, Abd El-Aziz TH, Khalil FAM, Ahmed YF, et al. Effect of Egyptian propolis on cryptosporidiosis in immunosuppressed rats with special emphasis on oocysts shedding, leukogram, protein profile and ileum histopathology. Asian Pac J Trop Med. 2017;10(3):253–62. https:// doi.org/10.1016/j.apjtm.2017.03.004 PMID: 28442108

89. Di Genova BM, Tonelli RR. Infection strategies of intestinal parasite pathogens and host cell responses. Front Microbiol. 2016;7256. https://doi.org/10.3389/fmicb.2016.00256 PMID: 26973630

90. Klein P, Kleinová T, Volek Z, Simůnek J. Effect of Cryptosporidium parvum infection on the absorptive capacity and paracellular permeability of the small intestine in neonatal calves. Vet Parasitol. 2008;152(1–2):53–9. https://doi.org/10.1016/j.vetpar.2007.11.020 PMID: 18248900

91. Mead JR. Prospects for immunotherapy and vaccines against Cryptosporidium. Hum Vaccin Immunother. 2014;10(6):1505–13. https://doi.org/10.4161/hv.28485 PMID: 24638018

92. McCole DF, Eckmann L, Laurent F, Kagnoff MF. Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infect Immun. 2000;68(3):1710–3. https://doi.org/10.1128/IAI.68.3.1710-1713.2000 PMID: 10678994

93. Uchiyama R, Tsutsui H. Caspases as the key effectors of inflammatory responses against bacterial infection. Arch Immunol Ther Exp (Warsz). 2015;63(1):1–13. https://doi.org/10.1007/s00005-014-0301-2 PMID: 25033773

94. Sasahara T, Maruyama H, Aoki M, Kikuno R, Sekiguchi T, Takahashi A, et al. Apoptosis of intestinal crypt epithelium after Cryptosporidium parvum infection. J Infect Chemother. 2003;9(3):278–81. https://doi.org/10.1007/s10156-003-0259-1 PMID: 14513402

95. Buret AG, Chin AC, Scott KGE. Infection of human and bovine epithelial cells with Cryptosporidium andersoni induces apoptosis and disrupts tight junctional ZO-1: effects of epidermal growth factor. Int J Parasitol. 2003;33(12):1363–71. https://doi.org/10.1016/s0020-7519(03)00138-3 PMID: 14527519

96. Ranasinghe S, Zahedi A, Armson A, Lymbery AJ, Ash A. In vitro susceptibility of cryptosporidium parvum to plant antiparasitic compounds. Pathogens. 2022;12(1):61. https://doi.org/10.3390/pathogens12010061 PMID: 36678409

97. El-Shewehy DMM, Elshopakey GE, Ismail A, Hassan SS, Ramez AM. Therapeutic potency of ginger, garlic, and pomegranate extracts against cryptosporidium parvum-mediated gastro-splenic damage in mice. Acta Parasitol. 2023;68(1):32–41. https://doi.org/10.1007/s11686-022-00635-0 PMID: 36348178

98. Elfalleh W. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J Med Plants Res. 2012;6(32):. https://doi.org/10.5897/jmpr11.995

99. Weyl-Feinstein S, Markovics A, Eitam H, Orlov A, Yishay M, Agmon R, et al. Short communication: effect of pomegranate-residue supplement on Cryptosporidium parvum oocyst shedding in neonatal calves. J Dairy Sci. 2014;97(9):5800–5. https://doi.org/10.3168/jds.2013-7136 PMID: 24952772

100. El Ezz N, Khalil F, Shaapan R. Therapeutic effect of onion (Allium cepa) and cinnamon (Cinnamomum zeylanicum) oils on cryptosporidiosis in experimentally infected mice. Global Veterinaria. n.d.;7179–83.

101. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022;27(9):2901. https://doi.org/10.3390/molecules27092901 PMID: 35566252

102. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. https://doi.org/10.3390/molecules25225243 PMID: 33187049

103. Farzaei MH, Singh AK, Kumar R, Croley CR, Pandey AK, Coy-Barrera E, et al. Targeting inflammation by flavonoids: novel therapeutic strategy for metabolic disorders. Int J Mol Sci. 2019;20(19):4957. https://doi.org/10.3390/ijms20194957 PMID: 31597283

104. Lago JHG, Toledo-Arruda AC, Mernak M, Barrosa KH, Martins MA, Tibério IFLC, et al. Structure-activity association of flavonoids in lung diseases. Molecules. 2014;19(3):3570–95. https://doi. org/10.3390/molecules19033570 PMID: 24662074

105. Bildziukevich U, Wimmerová M, Wimmer Z. Saponins of selected triterpenoids as potential therapeutic agents: a review. Pharmaceuticals (Basel). 2023;16(3):386. https://doi.org/10.3390/ph16030386 PMID: 36986485

106. Elshamy A, Farrag A-R, Mohamed S, Ali N, Mohamed T, Menshawy M, et al. Gastroprotective effects of ursolic acid isolated from Ochrosia elliptica on ethanol-induced gastric ulcer in rats. Med Chem Res. 2020;29113–25.