Author(s): Giovanna B. Melas 1,2, Oriol Ortiz 3,†, Amira M. Roshdy 4, Mohamed Y. Hendawi 5, Dimitrios Triantakonstantis 6,* and Sameh Shaddad
Keywords: biochar, pesticides, soil biosystem, soil biodiversity, soil micro- and macroorganisms, soil vitality, climate change, agrochemical contamination, soil quality, mitigating effect
Considering the global competition to increase food productivity due to the increasing population growth, the use of chemical pesticides has become the quick solution, but by increasing awareness about the serious dangers of wasteful chemicals in various areas of life, it has become necessary to move immediately, albeit gradually, towards safe biological treatments. From this point of view, the use of biochar is one of the trends in reducing soil pollution with chemical pesticides. Therefore, the main objectives of this work are (i) to assess if the application of three pesticides based on imidacloprid, methyl thiophanate, and glyphosate has detectable adverse consequences on soil organisms’ activity and (ii) to evaluate if the addition of biochar modifies the effects of these chemicals. An agricultural soil was amended with different doses of biochar. The treated soil received realistic amounts of currently used pesticides. Samples were stored at 21 °C and 50% WHC (water holding capacity) for a period of 28 days under dark conditions.
Oxygen consumption was measured for 12 consecutive hours after the addition of 2.5 g glucose kg−1 as a stimulant for soil organisms. Biomass C was estimated from the difference between the amount of C in 0.5 M K2SO4 extracts of CHCl3 fumigated soil and the extractable C in non-fumigated samples. Specific respiration was computed as the amount of O2 consumed per unit of Biomass Carbon. The results of this work proved that the tested biochar could modulate the effects produced by the agrochemicals on soil biomass.
1. Hassaan, M.A.; El Nemr, A. Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. https://doi.org/10.1016/j.ejar.2020.08.007.
2. Egamberdieva, D.; Jabbarov, Z.; Arora, N.K.; Wirth, S.; Bellingrath-Kimura, S.D. Biochar Mitigates Effects of Pesticides on Soil Biological Activities. Environ. Sustain. 2021, 4, 335–342. https://doi.org/10.1007/s42398-021-00190-w.
3. Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide Residues in European Agricultural Soils—A Hidden Reality Unfolded. Sci. Total Environ. 2019, 653, 1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441.
4. Wu, C.; Zhi, D.; Yao, B.; Zhou, Y.; Yang, Y.; Zhou, Y. Immobilization of Microbes on Biochar for Water and Soil Remediation: A Review. Environ. Res. 2022, 212, 113226. https://doi.org/10.1016/j.envres.2022.113226.
5. El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma 2019, 337, 536– 554. https://doi.org/10.1016/j.geoderma.2018.09.034.
6. Ni, N.; Shi, R.; Liu, Z.; Bian, Y.; Wang, F.; Song, Y.; Jiang, X. Effects of Biochars on the Bioaccessibility of Phenanthrene/ Pyrene/Zinc/Lead and Microbial Community Structure in a Soil under Aerobic and Anaerobic Conditions. J. Environ. Sci. 2018, 63, 296–306. https://doi.org/10.1016/j.jes.2017.05.023.
7. Lou, L.; Wu, B.; Wang, L.; Luo, L.; Xu, X.; Hou, J.; Xun, B.; Hu, B.; Chen, Y. Sorption and Ecotoxicity of Pentachlorophenol Polluted Sediment Amended with Rice-Straw Derived Biochar. Bioresour. Technol. 2011, 102, 4036–4041. https://doi.org/10.1016/j.biortech.2010.12.010.
8. Singh, D.K. Toxicology: Agriculture and Environment Volume 1: Pesticide Chemistry and Toxicology. Univ. Delhi India 2012, 3–25.
9. European Commission. Review Report for the Active Substance Thiophanate-Methyl. Finalised in the Standing Committee on the Food Chain and Animal Health at Its Meeting on 15 February 2005 in View of the Inclusion of Thiophanate-Methyl in Annex I of Directive 91/414/EEC; European Commission: Brussels, Belgium, 2005.
10. European Commission. Review Report for the Active Substance Glyphosate. Finalised in the Standing Committee on Plant Health at Its Meeting on 29 June 2001 in View of the Inclusion of Glyphosate in Annex I of Directive 91/414/EEC; European Commission: Brussels, Belgium, 2002.
11. Anderson, J.P.E.; Domsch, K.H. A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils. Soil Biol. Biochem. 1978, 10, 215–221. https://doi.org/10.1016/0038-0717(78)90099-8.
12. García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil Microbial Biomass and Activity under Different Agricultural Management Systems in a Semiarid Mediterranean Agroecosystem. Soil Tillage Res. 2010, 109, 110–115. https://doi.org/10.1016/j.still.2010.05.005.
13. Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6.
14. Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive Priming of Black Carbon and Glucose Mineralisation. Org. Geochem. 2004, 35, 823–830. https://doi.org/10.1016/j.orggeochem.2004.03.003.
15. Egamberdieva, D.; Reckling, M.; Wirth, S. Biochar-Based Bradyrhizobium Inoculum Improves Growth of Lupin (Lupinus angustifolius L.) under Drought Stress. Eur. J. Soil Biol. 2017, 78, 38–42. https://doi.org/10.1016/j.ejsobi.2016.11.007.
16. Egamberdieva, D.; Hua, M.; Reckling, M.; Wirth, S.; Bellingrath-Kimura, S.D. Potential Effects of Biochar-Based Microbial Inoculants in Agriculture. Environ. Sustain. 2018, 1, 19–24. https://doi.org/10.1007/s42398-018-0010-6.
17. Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of Biochar for the Management of Contaminated Soil: Preparation, Application and Prospect. Sci. Total Environ. 2019, 659, 473–490. https://doi.org/10.1016/j.scitotenv.2018.12.400.
18. Patel, A.K.; Singhania, R.R.; Pal, A.; Chen, C.-W.; Pandey, A.; Dong, C.-D. Advances on Tailored Biochar for Bioremediation of Antibiotics, Pesticides and Polycyclic Aromatic Hydrocarbon Pollutants from Aqueous and Solid Phases. Sci. Total Environ. 2022, 817, 153054. https://doi.org/10.1016/j.scitotenv.2022.153054.
19. Nguyen, B.T.; Lehmann, J. Black Carbon Decomposition under Varying Water Regimes. Org. Geochem. 2009, 40, 846–853. https://doi.org/10.1016/j.orggeochem.2009.05.004. Earth 2025, 6, 27 12 of 12
20. Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.A.; Ahmedna, M.A.; Niandou, M.A.S. Short-Term CO2 Mineralization after Additions of Biochar and Switchgrass to a Typic Kandiudult. Geoderma 2010, 154, 281–288. https://doi.org/10.1016/j.geoderma.2009.10.014.
21. Kuzyakov, Y. Sources of CO2 Efflux from Soil and Review of Partitioning Methods. Soil Biol. Biochem. 2006, 38, 425–448. https://doi.org/10.1016/j.soilbio.2005.08.020.
22. Yamato, M.; Yasuyuki, O.; Irhas Fredy, W.; Saifuddin, A.; and Ogawa, M. Effects of the Application of Charred Bark of Acacia Mangium on the Yield of Maize, Cowpea and Peanut, and Soil Chemical Properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. https://doi.org/10.1111/j.1747-0765.2006.00065.x.
23. Boehm, H.P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon N. Y. 1994, 32, 759–769. https://doi.org/10.1016/0008-6223(94)90031-0.
24. Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. https://doi.org/10.2136/sssaj2017.01.0017.
25. Thies, J.E. and Rillig, M.C. Biochar for Environmental Management Science and Technology. In Biochar for Environmental Management Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 85–105.
26. Jin, K.L. Modern Biological Theories for Aging. Aging Dis. 2010, 1, 72–74.
27. Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a Habitat for Microbes and Its Effect on the Microbial Community of the Underlying Humus. Oikos 2000, 89, 231–242.
28. Ogawa, M.; Okimori, Y.; Takahashi, F. Carbon Sequestration by Carbonization of Biomass and Forestation: Three Case Studies. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 429–444. https://doi.org/10.1007/s11027-005-9007-4.
29. Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G.; et al. Black Carbon Affects the Cycling of Non-Black Carbon in Soil. Org. Geochem. 2010, 41, 206–213. https://doi.org/10.1016/j.orggeochem.2009.09.007.
30. Marchetti, R.; Castelli, F.; Orsi, A.; Sghedoni, L.; Bochicchio, D. Biochar from Swine Manure Solids: Influence on Carbon Sequestration and Olsen Phosphorus and Mineral Nitrogen Dynamics in Soil with and without Digestate Incorporation. Ital. J. Agron. 2012, 7, 26.
31. Melas, G.; Ortiz, O.; Alacañiz, J. Can Biochar Protect Labile Organic Matter against Mineralization in the Soil? Pedosphere 2017, 27, 822–831. https://doi.org/10.1016/S1002-0160(17)60421-1.
32. Khorram, M.S.; Lin, D.; Zhang, Q.; Zheng, Y.; Fang, H.; Yu, Y. Effects of Aging Process on Adsorption–Desorption and Bioavailability of Fomesafen in an Agricultural Soil Amended with Rice Hull Biochar. J. Environ. Sci. 2017, 56, 180–191. https://doi.org/10.1016/j.jes.2016.09.012.
33. Frioni, L. Procesos Microbianos; Fundación Universidad de Río Cuarto: Río Cuarto, Argentina, 1999; Volume II, pp. 273–274.
34. Zdruli, P.; Jones, R.J.A.; Montanarella, L. Organic Matter in the Soils of Southern Europe; European Soil Bureau Technical Report; EUR 21083 EN; Office for Official Publications of the European Communities: Luxembourg, 2004; 16p.
35. Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47– 82.
36. Nag, S.K.; Kookana, R.; Smith, L.; Krull, E.; Macdonald, L.M.; Gill, G. Poor Efficacy of Herbicides in Biochar-Amended Soils as Affected by Their Chemistry and Mode of Action. Chemosphere 2011, 84, 1572–1577. https://doi.org/10.1016/j.chemosphere.2011.05.052.
37. Meng, L.; Sun, T.; Li, M.; Saleem, M.; Zhang, Q.; Wang, C. Soil-Applied Biochar Increases Microbial Diversity and Wheat Plant Performance under Herbicide Fomesafen Stress. Ecotoxicol. Environ. Saf. 2019, 171, 75–83. https://doi.org/10.1016/j.ecoenv.2018.12.065.
38. Hammes, K.; Schmidt, M. Changes in biochar in soil. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 169–182. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright © 2025 Schobot.net All rights reserved.